arXiv Analytics

Sign in

arXiv:2403.15758 [math.CA]AbstractReferencesReviewsResources

An endpoint estimate for the maximal Calderón commutator with rough kernel

Guoen Hu, Xudong Lai, Xiangxing Tao, Qingying Xue

Published 2024-03-23Version 1

In this paper, the authors consider the endpoint estimates for the maximal Calder\'on commutator defined by $$T_{\Omega,\,a}^*f(x)=\sup_{\epsilon>0}\Big|\int_{|x-y|>\epsilon}\frac{\Omega(x-y)}{|x-y|^{d+1}} \big(a(x)-a(y)\big)f(y)dy\Big|,$$ where $\Omega$ is homogeneous of degree zero, integrable on $S^{d-1}$ and has vanishing moment of order one, $a$ be a function on $\mathbb{R}^d$ such that $\nabla a\in L^{\infty}(\mathbb{R}^d)$. The authors prove that if $\Omega\in L\log L(S^{d-1})$, then $T^*_{\Omega,\,a}$ satisfies an endpoint estimate of $L\log\log L$ type.

Related articles: Most relevant | Search more
arXiv:2203.11541 [math.CA] (Published 2022-03-22)
$L^p(\mathbb{R}^d)$ boundedness for the Calderón commutator with rough kernel
arXiv:2009.11650 [math.CA] (Published 2020-09-24)
An endpoint estimate for the commutators of singular integral operators with rough kernels
arXiv:1503.04008 [math.CA] (Published 2015-03-13)
The $L(\log L)^ε$ endpoint estimate for maximal singular integral operators