arXiv Analytics

Sign in

arXiv:2203.11541 [math.CA]AbstractReferencesReviewsResources

$L^p(\mathbb{R}^d)$ boundedness for the Calderón commutator with rough kernel

Jiecheng Chen, Guoen Hu, Xiangxing Tao

Published 2022-03-22Version 1

Let $k\in\mathbb{N}$, $\Omega$ be homogeneous of degree zero, integrable on $S^{d-1}$ and have vanishing moment of order $k$, $a$ be a function on $\mathbb{R}^d$ such that $\nabla a\in L^{\infty}(\mathbb{R}^d)$, and $T_{\Omega,\,a;k}$ be the $d$-dimensional Calder\'on commutator defined by $$T_{\Omega,\,a;k}f(x)={\rm p.\,v.}\int_{\mathbb{R}^d}\frac{\Omega(x-y)}{|x-y|^{d+k}}\big(a(x)-a(y)\big)^kf(y){d}y.$$ In this paper, the authors prove that if $$\sup_{\zeta\in S^{d-1}}\int_{S^{d-1}}|\Omega(\theta)|\log ^{\beta} \big(\frac{1}{|\theta\cdot\zeta|}\big)d\theta<\infty,$$ with $\beta\in(1,\,\infty]$, then for $\frac{2\beta}{2\beta-1}<p<2\beta$, $T_{\Omega,\,a;\,k}$ is bounded on $L^p(\mathbb{R}^d)$.

Related articles: Most relevant | Search more
arXiv:1011.5763 [math.CA] (Published 2010-11-26)
The boundedness of some operators with rough kernel on the weighted Morrey spaces
arXiv:1608.07199 [math.CA] (Published 2016-08-25)
A Two-weight inequality between $L^p(\ell^2)$ and $L^p$
arXiv:1309.6512 [math.CA] (Published 2013-09-25)
Boundedness of Intrinsic Littlewood-Paley Functions on Musielak-Orlicz Morrey and Campanato Spaces