arXiv:2009.11650 [math.CA]AbstractReferencesReviewsResources
An endpoint estimate for the commutators of singular integral operators with rough kernels
Published 2020-09-24Version 1
Let $\Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$, $T_{\Omega}$ be the homogeneous singular integral operator with kernel $\frac{\Omega(x)}{|x|^d}$ and $T_{\Omega,\,b}$ be the commutator of $T_{\Omega}$ with symbol $b$. In this paper, we prove that if $\Omega\in L(\log L)^2(S^{d-1})$, then for $b\in {\rm BMO}(\mathbb{R}^d)$, $T_{\Omega,\,b}$ satisfies an endpoint estimate of $L\log L$ type.
Related articles: Most relevant | Search more
arXiv:2303.14855 [math.CA] (Published 2023-03-26)
Weighted $L^p\to L^q$-boundedness of commutators and paraproducts in the Bloom setting
arXiv:2403.15758 [math.CA] (Published 2024-03-23)
An endpoint estimate for the maximal Calderón commutator with rough kernel
arXiv:2305.07832 [math.CA] (Published 2023-05-13)
A bilinear sparse domination for the maximal singular integral operators with rough kernels