arXiv:2305.07832 [math.CA]AbstractReferencesReviewsResources
A bilinear sparse domination for the maximal singular integral operators with rough kernels
Published 2023-05-13Version 1
Let $\Omega$ be homogeneous of degree zero, integrable on $S^{d-1}$ and have mean value zero, $T_{\Omega}$ be the homogeneous singular integral operator with kernel $\frac{\Omega(x)}{|x|^d}$ and $T_{\Omega}^*$ be the maximal operator associated to $T_{\Omega}$. In this paper, the authors prove that if $\Omega\in L^{\infty}(S^{d-1})$, then for all $r\in (1,\,\infty)$, $T_{\Omega}^*$ enjoys a $(L^\Phi,\,L^r)$ bilinear sparse domination with bound $Cr'\|\Omega\|_{L^{\infty}(S^{d-1})}$, where $\Phi(t)=t\log\log ({\rm e}^2+t)$.
Related articles: Most relevant | Search more
arXiv:1503.04008 [math.CA] (Published 2015-03-13)
The $L(\log L)^ε$ endpoint estimate for maximal singular integral operators
arXiv:2009.11650 [math.CA] (Published 2020-09-24)
An endpoint estimate for the commutators of singular integral operators with rough kernels
arXiv:1011.5719 [math.CA] (Published 2010-11-26)
Estimates for singular integrals on homogeneous groups