{ "id": "2009.11650", "version": "v1", "published": "2020-09-24T13:09:05.000Z", "updated": "2020-09-24T13:09:05.000Z", "title": "An endpoint estimate for the commutators of singular integral operators with rough kernels", "authors": [ "Guoen Hu", "Xiangxing Tao" ], "comment": "19 pages", "categories": [ "math.CA" ], "abstract": "Let $\\Omega$ be homogeneous of degree zero and have mean value zero on the unit sphere ${S}^{d-1}$, $T_{\\Omega}$ be the homogeneous singular integral operator with kernel $\\frac{\\Omega(x)}{|x|^d}$ and $T_{\\Omega,\\,b}$ be the commutator of $T_{\\Omega}$ with symbol $b$. In this paper, we prove that if $\\Omega\\in L(\\log L)^2(S^{d-1})$, then for $b\\in {\\rm BMO}(\\mathbb{R}^d)$, $T_{\\Omega,\\,b}$ satisfies an endpoint estimate of $L\\log L$ type.", "revisions": [ { "version": "v1", "updated": "2020-09-24T13:09:05.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "endpoint estimate", "rough kernels", "commutator", "mean value zero", "homogeneous singular integral operator" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }