{ "id": "2403.15758", "version": "v1", "published": "2024-03-23T08:19:25.000Z", "updated": "2024-03-23T08:19:25.000Z", "title": "An endpoint estimate for the maximal Calderón commutator with rough kernel", "authors": [ "Guoen Hu", "Xudong Lai", "Xiangxing Tao", "Qingying Xue" ], "comment": "25 pages", "categories": [ "math.CA" ], "abstract": "In this paper, the authors consider the endpoint estimates for the maximal Calder\\'on commutator defined by $$T_{\\Omega,\\,a}^*f(x)=\\sup_{\\epsilon>0}\\Big|\\int_{|x-y|>\\epsilon}\\frac{\\Omega(x-y)}{|x-y|^{d+1}} \\big(a(x)-a(y)\\big)f(y)dy\\Big|,$$ where $\\Omega$ is homogeneous of degree zero, integrable on $S^{d-1}$ and has vanishing moment of order one, $a$ be a function on $\\mathbb{R}^d$ such that $\\nabla a\\in L^{\\infty}(\\mathbb{R}^d)$. The authors prove that if $\\Omega\\in L\\log L(S^{d-1})$, then $T^*_{\\Omega,\\,a}$ satisfies an endpoint estimate of $L\\log\\log L$ type.", "revisions": [ { "version": "v1", "updated": "2024-03-23T08:19:25.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "endpoint estimate", "maximal calderón commutator", "rough kernel", "maximal calderon commutator", "degree zero" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }