arXiv Analytics

Sign in

arXiv:2401.14301 [math.NT]AbstractReferencesReviewsResources

Some determinants involving quadratic residues modulo primes

Zhi-Wei Sun

Published 2024-01-25Version 1

In this paper we evaluate several determinants involving quadratic residues modulo primes. For example, for any prime $p>3$ with $p\equiv3\pmod4$ and $a,b\in\mathbb Z$ with $p\nmid ab$, we prove that $$\det\left[1+\tan\pi\frac{aj^2+bk^2}p\right]_{1\le j,k\le\frac{p-1}2}=\begin{cases}-2^{(p-1)/2}p^{(p-3)/4}&\text{if}\ (\frac{ab}p)=1, \\p^{(p-3)/4}&\text{if}\ (\frac{ab}p)=-1,\end{cases}$$ where $(\frac{\cdot}p)$ denotes the Legendre symbol. We also pose some conjectures for further research.

Comments: 12 pages
Categories: math.NT
Subjects: 11A15, 11C20, 15A15, 33B10
Related articles: Most relevant | Search more
arXiv:1907.12981 [math.NT] (Published 2019-07-30)
On two conjectures involving quadratic residues
arXiv:2006.08909 [math.NT] (Published 2020-06-16)
On some conjectures of P. Barry related to the Rueppel sequence
arXiv:2007.06453 [math.NT] (Published 2020-07-08)
Proof of three conjectures on determinants related to quadratic residues