{ "id": "2401.14301", "version": "v1", "published": "2024-01-25T16:50:35.000Z", "updated": "2024-01-25T16:50:35.000Z", "title": "Some determinants involving quadratic residues modulo primes", "authors": [ "Zhi-Wei Sun" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "In this paper we evaluate several determinants involving quadratic residues modulo primes. For example, for any prime $p>3$ with $p\\equiv3\\pmod4$ and $a,b\\in\\mathbb Z$ with $p\\nmid ab$, we prove that $$\\det\\left[1+\\tan\\pi\\frac{aj^2+bk^2}p\\right]_{1\\le j,k\\le\\frac{p-1}2}=\\begin{cases}-2^{(p-1)/2}p^{(p-3)/4}&\\text{if}\\ (\\frac{ab}p)=1, \\\\p^{(p-3)/4}&\\text{if}\\ (\\frac{ab}p)=-1,\\end{cases}$$ where $(\\frac{\\cdot}p)$ denotes the Legendre symbol. We also pose some conjectures for further research.", "revisions": [ { "version": "v1", "updated": "2024-01-25T16:50:35.000Z" } ], "analyses": { "subjects": [ "11A15", "11C20", "15A15", "33B10" ], "keywords": [ "quadratic residues modulo primes", "determinants", "legendre symbol", "conjectures" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }