arXiv Analytics

Sign in

arXiv:2007.06453 [math.NT]AbstractReferencesReviewsResources

Proof of three conjectures on determinants related to quadratic residues

Darij Grinberg, Zhi-Wei Sun, Lilu Zhao

Published 2020-07-08Version 1

In this paper we confirm three conjectures of Z.-W. Sun on determinants. We first show that any odd integer $n>3$ divides the determiant $$\left|(i^2+dj^2)\left(\frac{i^2+dj^2}n\right)\right|_{0\le i,j\le (n-1)/2},$$ where $d$ is any integer and $(\frac{\cdot}n)$ is the Jacobi symbol. Then we prove some divisibility results concerning $|(i+dj)^n|_{0\le i,j\le n-1}$ and $|(i^2+dj^2)^n|_{0\le i,j\le n-1}$, where $d\not=0$ and $n>2$ are integers. Finally, for any odd prime $p$ and integers $c$ and $d$ with $p\nmid cd$, we determine completely the Legendre symbol $(\frac{S_c(d,p)}p)$, where $S_c(d,p):=|(\frac{i^2+dj^2+c}p)|_{1\le i,j\le(p-1)/2}$.

Comments: 13 pages
Categories: math.NT
Subjects: 11C20, 11A07, 11A15, 15A15
Related articles: Most relevant | Search more
arXiv:2401.14301 [math.NT] (Published 2024-01-25)
Some determinants involving quadratic residues modulo primes
arXiv:2006.08909 [math.NT] (Published 2020-06-16)
On some conjectures of P. Barry related to the Rueppel sequence
arXiv:1412.5415 [math.NT] (Published 2014-12-10)
Proof of some conjectures of Z.-W. Sun on the divisibility of certain double-sums