{ "id": "2007.06453", "version": "v1", "published": "2020-07-08T15:57:02.000Z", "updated": "2020-07-08T15:57:02.000Z", "title": "Proof of three conjectures on determinants related to quadratic residues", "authors": [ "Darij Grinberg", "Zhi-Wei Sun", "Lilu Zhao" ], "comment": "13 pages", "categories": [ "math.NT" ], "abstract": "In this paper we confirm three conjectures of Z.-W. Sun on determinants. We first show that any odd integer $n>3$ divides the determiant $$\\left|(i^2+dj^2)\\left(\\frac{i^2+dj^2}n\\right)\\right|_{0\\le i,j\\le (n-1)/2},$$ where $d$ is any integer and $(\\frac{\\cdot}n)$ is the Jacobi symbol. Then we prove some divisibility results concerning $|(i+dj)^n|_{0\\le i,j\\le n-1}$ and $|(i^2+dj^2)^n|_{0\\le i,j\\le n-1}$, where $d\\not=0$ and $n>2$ are integers. Finally, for any odd prime $p$ and integers $c$ and $d$ with $p\\nmid cd$, we determine completely the Legendre symbol $(\\frac{S_c(d,p)}p)$, where $S_c(d,p):=|(\\frac{i^2+dj^2+c}p)|_{1\\le i,j\\le(p-1)/2}$.", "revisions": [ { "version": "v1", "updated": "2020-07-08T15:57:02.000Z" } ], "analyses": { "subjects": [ "11C20", "11A07", "11A15", "15A15" ], "keywords": [ "quadratic residues", "determinants", "conjectures", "jacobi symbol", "odd integer" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }