arXiv:1907.12981 [math.NT]AbstractReferencesReviewsResources
On two conjectures involving quadratic residues
Published 2019-07-30Version 1
Let $p$ be an odd prime with $p\equiv 1\pmod 4$. In this paper we confirm two conjectures of Sun involving quadratic residues modulo $p$. For example, we show that for any integer $a\not\equiv0\pmod p$ we have \begin{align*}&(-1)^{|\{1\le k<p/4:\ (\frac kp)=-1\}|}\prod_{1\le j<k\le (p-1)/2}(e^{2\pi iaj^2/p}+e^{2\pi iak^2/p}) \\=&\begin{cases}1&\text{if}\ p\equiv1\pmod 8,\\\left(\frac ap\right)\varepsilon_p^{-(\frac ap)h(p)}&\text{if}\ p\equiv5\pmod8,\end{cases} \end{align*} where $(\frac{\cdot}p)$ is the Legendre symbol, and $\varepsilon_p$ and $h(p)$ are the fundamental unit and the class number of the real quadratic field $\mathbb Q(\sqrt p)$.
Comments: 7 pages
Categories: math.NT
Related articles: Most relevant | Search more
Consecutive primes and Legendre symbols
Some conjectures on congruences
arXiv:2401.14301 [math.NT] (Published 2024-01-25)
Some determinants involving quadratic residues modulo primes