{ "id": "1907.12981", "version": "v1", "published": "2019-07-30T14:28:49.000Z", "updated": "2019-07-30T14:28:49.000Z", "title": "On two conjectures involving quadratic residues", "authors": [ "Fedor Petrov", "Zhi-Wei Sun" ], "comment": "7 pages", "categories": [ "math.NT" ], "abstract": "Let $p$ be an odd prime with $p\\equiv 1\\pmod 4$. In this paper we confirm two conjectures of Sun involving quadratic residues modulo $p$. For example, we show that for any integer $a\\not\\equiv0\\pmod p$ we have \\begin{align*}&(-1)^{|\\{1\\le k