arXiv:2303.09646 [math.NT]AbstractReferencesReviewsResources
Subconvexity for $GL(1)$ twists of Rankin-Selberg $L$-functions
Published 2023-03-16Version 1
Let $f$ and $g$ be two Hecke-Maass or holomorphic primitive cusp forms for $SL(2,\mathbb{Z})$ and $\chi$ be a primitive Dirichlet character of modulus $p$, a prime. A subconvex bound for the central values of the Rankin-Selberg L-functions is $L(s, f \otimes g \otimes \chi)$ is give by $$L(\frac{1}{2}, f \otimes g \otimes \chi) \ll_{f,g,\epsilon} {p}^{1- \left(\frac{1-2\theta}{5+2\theta}\right) +\epsilon} ,$$ for any $\epsilon > 0$, where the implied constant depends only on the forms $f,g$ and $\epsilon$.
Comments: First Draft. arXiv admin note: text overlap with arXiv:2111.00696
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1810.00539 [math.NT] (Published 2018-10-01)
Subconvexity for $GL(3)\times GL(2)$ $L$-functions in $t$-aspect
arXiv:math/0502470 [math.NT] (Published 2005-02-23)
Real zeros and size of Rankin-Selberg L-functions in the level aspect
arXiv:2005.08185 [math.NT] (Published 2020-05-17)
A subconvex bound for twisted $L$-functions