arXiv:2005.08185 [math.NT]AbstractReferencesReviewsResources
A subconvex bound for twisted $L$-functions
Published 2020-05-17Version 1
Let $\mathfrak{q}>2$ be a prime number, $\chi$ a primitive Dirichlet character modulo $\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\otimes \chi)\ll \mathfrak{q}^{1/2-1/12+\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\varepsilon$. The main input is a modifying trivial delta method developed in [1].
Related articles: Most relevant | Search more
arXiv:1604.08000 [math.NT] (Published 2016-04-27)
Twists of $GL(3)$ $L$-functions
arXiv:1801.08593 [math.NT] (Published 2018-01-25)
Subconvex bounds on GL(3) via degeneration to frequency zero
arXiv:2212.14620 [math.NT] (Published 2022-12-30)
Second moment of degree three $L$-functions