arXiv Analytics

Sign in

arXiv:1604.08000 [math.NT]AbstractReferencesReviewsResources

Twists of $GL(3)$ $L$-functions

Ritabrata Munshi

Published 2016-04-27Version 1

Let $\pi$ be a $SL(3,\mathbb Z)$ Hecke-Maass cusp form, and let $\chi$ be a primitive Dirichlet character modulo $M$, which we assume to be prime. In this note we revisit the subconvexity problem addressed in `The circle method and bounds for $L$-functions IV' and establish the following unconditional bound \begin{align*} L\left(\tfrac{1}{2},\pi\otimes\chi\right)\ll M^{3/4-1/308+\varepsilon}. \end{align*}

Related articles: Most relevant | Search more
arXiv:1211.5731 [math.NT] (Published 2012-11-25, updated 2013-01-18)
The circle method and bounds for $L$-functions - II: Subconvexity for twists of GL(3) $L$-functions
arXiv:0903.3591 [math.NT] (Published 2009-03-20, updated 2010-03-09)
The subconvexity problem for $\GL_{2}$
arXiv:1311.6120 [math.NT] (Published 2013-11-24, updated 2014-02-16)
The circle method and bounds for $L$-functions - IV: Subconvexity for twists of $GL(3)$ $L$-functions - B