{ "id": "1604.08000", "version": "v1", "published": "2016-04-27T09:52:35.000Z", "updated": "2016-04-27T09:52:35.000Z", "title": "Twists of $GL(3)$ $L$-functions", "authors": [ "Ritabrata Munshi" ], "comment": "First draft", "categories": [ "math.NT" ], "abstract": "Let $\\pi$ be a $SL(3,\\mathbb Z)$ Hecke-Maass cusp form, and let $\\chi$ be a primitive Dirichlet character modulo $M$, which we assume to be prime. In this note we revisit the subconvexity problem addressed in `The circle method and bounds for $L$-functions IV' and establish the following unconditional bound \\begin{align*} L\\left(\\tfrac{1}{2},\\pi\\otimes\\chi\\right)\\ll M^{3/4-1/308+\\varepsilon}. \\end{align*}", "revisions": [ { "version": "v1", "updated": "2016-04-27T09:52:35.000Z" } ], "analyses": { "subjects": [ "11F66" ], "keywords": [ "hecke-maass cusp form", "primitive dirichlet character modulo", "circle method", "subconvexity problem", "unconditional bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2016arXiv160408000M" } } }