arXiv:1211.5731 [math.NT]AbstractReferencesReviewsResources
The circle method and bounds for $L$-functions - II: Subconvexity for twists of GL(3) $L$-functions
Published 2012-11-25, updated 2013-01-18Version 2
Let $\pi$ be a $SL(3,\mathbb Z)$ automorphic form. Let $\chi=\chi_1\chi_2$ be a Dirichlet character with $\chi_i$ primitive modulo $M_i$. Suppose $M_1$, $M_2$ are primes such that $\sqrt{M_2}M^{4\delta}<M_1<M_2M^{-3\delta}$, where $M=M_1M_2$ and $0<\delta<1/28$. In this paper we will prove the following subconvex bound $$ L(\t1/2,\pi\otimes\chi)\ll_{\pi,\varepsilon} M^{3/4}-\delta+\varepsilon}. $$
Comments: 10 pages, revised version
Categories: math.NT
Related articles: Most relevant | Search more
The circle method and bounds for $L$-functions - IV: Subconvexity for twists of $GL(3)$ $L$-functions - B
arXiv:2305.05071 [math.NT] (Published 2023-05-08)
Rational lines on diagonal hypersurfaces and subconvexity via the circle method
arXiv:2401.06100 [math.NT] (Published 2024-01-11)
Special values of $p$-adic $L$-functions and Iwasawa $λ$-invariants of Dirichlet characters