{ "id": "2005.08185", "version": "v1", "published": "2020-05-17T08:01:41.000Z", "updated": "2020-05-17T08:01:41.000Z", "title": "A subconvex bound for twisted $L$-functions", "authors": [ "Qingfeng Sun", "Hui Wang" ], "comment": "12 pages", "categories": [ "math.NT" ], "abstract": "Let $\\mathfrak{q}>2$ be a prime number, $\\chi$ a primitive Dirichlet character modulo $\\mathfrak{q}$ and $f$ a primitive holomorphic cusp form or a Hecke-Maass cusp form of level $\\mathfrak{q}$ and trivial nebentypus. We prove the subconvex bound $$ L(1/2,f\\otimes \\chi)\\ll \\mathfrak{q}^{1/2-1/12+\\varepsilon}, $$ where the implicit constant depends only on the archimedean parameter of $f$ and $\\varepsilon$. The main input is a modifying trivial delta method developed in [1].", "revisions": [ { "version": "v1", "updated": "2020-05-17T08:01:41.000Z" } ], "analyses": { "subjects": [ "11F66" ], "keywords": [ "subconvex bound", "modifying trivial delta method", "primitive holomorphic cusp form", "primitive dirichlet character modulo", "hecke-maass cusp form" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }