arXiv Analytics

Sign in

arXiv:1810.00539 [math.NT]AbstractReferencesReviewsResources

Subconvexity for $GL(3)\times GL(2)$ $L$-functions in $t$-aspect

Ritabrata Munshi

Published 2018-10-01Version 1

Let $\pi$ be a Hecke-Maass cusp form for $SL(3,\mathbb Z)$ and $f$ be a holomorphic (or Maass) Hecke form for $SL(2,\mathbb{Z})$. In this paper we prove the following subconvex bound $$ L\left(\tfrac{1}{2}+it,\pi\times f\right)\ll_{\pi,f,\varepsilon} (1+|t|)^{\frac{3}{2}-\frac{1}{42}+\varepsilon}. $$

Comments: first draft
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2005.08185 [math.NT] (Published 2020-05-17)
A subconvex bound for twisted $L$-functions
arXiv:2303.09646 [math.NT] (Published 2023-03-16)
Subconvexity for $GL(1)$ twists of Rankin-Selberg $L$-functions
arXiv:1604.08000 [math.NT] (Published 2016-04-27)
Twists of $GL(3)$ $L$-functions