{ "id": "2303.09646", "version": "v1", "published": "2023-03-16T20:57:25.000Z", "updated": "2023-03-16T20:57:25.000Z", "title": "Subconvexity for $GL(1)$ twists of Rankin-Selberg $L$-functions", "authors": [ "Aritra Ghosh" ], "comment": "First Draft. arXiv admin note: text overlap with arXiv:2111.00696", "categories": [ "math.NT" ], "abstract": "Let $f$ and $g$ be two Hecke-Maass or holomorphic primitive cusp forms for $SL(2,\\mathbb{Z})$ and $\\chi$ be a primitive Dirichlet character of modulus $p$, a prime. A subconvex bound for the central values of the Rankin-Selberg L-functions is $L(s, f \\otimes g \\otimes \\chi)$ is give by $$L(\\frac{1}{2}, f \\otimes g \\otimes \\chi) \\ll_{f,g,\\epsilon} {p}^{1- \\left(\\frac{1-2\\theta}{5+2\\theta}\\right) +\\epsilon} ,$$ for any $\\epsilon > 0$, where the implied constant depends only on the forms $f,g$ and $\\epsilon$.", "revisions": [ { "version": "v1", "updated": "2023-03-16T20:57:25.000Z" } ], "analyses": { "keywords": [ "subconvexity", "holomorphic primitive cusp forms", "primitive dirichlet character", "rankin-selberg l-functions", "subconvex bound" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }