arXiv Analytics

Sign in

arXiv:2104.13025 [math.NT]AbstractReferencesReviewsResources

Uniform subconvexity bounds for $GL(3) \times GL(2)$ $L$-functions

Bingrong Huang

Published 2021-04-27Version 1

In this paper, we prove uniform subconvexity bounds for $GL(3)\times GL(2)$ $L$-functions in the $GL(2)$ spectral aspect and the $t$ aspect via a delta method. More precisely, let $\phi$ be a Hecke--Maass cusp form for $SL(3,\mathbb{Z})$ and $f$ a Hecke--Maass cusp form for $SL(2,\mathbb{Z})$ with the spectral parameter $t_f$. Then for $t\in\mathbb{R}$ and any $\varepsilon>0$, we have \[ L(1/2+it,\phi\times f) \ll_{\phi,\varepsilon} (t_f+|t|)^{27/20+\varepsilon}. \] Moreover, we get subconvexity bounds for $L(1/2+it,\phi\times f)$ whenever $|t|-t_f \gg (|t|+t_f)^{3/5+\varepsilon}$.

Comments: 31 pages. Comments are welcome!
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2010.10153 [math.NT] (Published 2020-10-20)
Subconvexity for $GL(3)\times GL(2)$ $L$-functions in $GL(3)$ spectral aspect
arXiv:1604.08000 [math.NT] (Published 2016-04-27)
Twists of $GL(3)$ $L$-functions
arXiv:2006.07819 [math.NT] (Published 2020-06-14)
Sub-convexity bound for $GL(3) \times GL(2)$ $L$-functions: $GL(3)$-spectral aspect