{ "id": "2104.13025", "version": "v1", "published": "2021-04-27T07:54:26.000Z", "updated": "2021-04-27T07:54:26.000Z", "title": "Uniform subconvexity bounds for $GL(3) \\times GL(2)$ $L$-functions", "authors": [ "Bingrong Huang" ], "comment": "31 pages. Comments are welcome!", "categories": [ "math.NT" ], "abstract": "In this paper, we prove uniform subconvexity bounds for $GL(3)\\times GL(2)$ $L$-functions in the $GL(2)$ spectral aspect and the $t$ aspect via a delta method. More precisely, let $\\phi$ be a Hecke--Maass cusp form for $SL(3,\\mathbb{Z})$ and $f$ a Hecke--Maass cusp form for $SL(2,\\mathbb{Z})$ with the spectral parameter $t_f$. Then for $t\\in\\mathbb{R}$ and any $\\varepsilon>0$, we have \\[ L(1/2+it,\\phi\\times f) \\ll_{\\phi,\\varepsilon} (t_f+|t|)^{27/20+\\varepsilon}. \\] Moreover, we get subconvexity bounds for $L(1/2+it,\\phi\\times f)$ whenever $|t|-t_f \\gg (|t|+t_f)^{3/5+\\varepsilon}$.", "revisions": [ { "version": "v1", "updated": "2021-04-27T07:54:26.000Z" } ], "analyses": { "keywords": [ "uniform subconvexity bounds", "hecke-maass cusp form", "spectral aspect", "delta method", "spectral parameter" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }