arXiv:2010.10153 [math.NT]AbstractReferencesReviewsResources
Subconvexity for $GL(3)\times GL(2)$ $L$-functions in $GL(3)$ spectral aspect
Published 2020-10-20Version 1
Let $f$ be a $SL(2,\mathbb{Z})$ holomorhic Hecke form and $\pi$ be a $SL(3,\mathbb{Z})$ Maass cusp form with its Langlands parameter $\mu$ in generic position i.e. away from Weyl chamber walls and away from self dual forms. We study the second moment $\sum_{j} |L(1/2,\pi_j\times f)|^2$ and deduce the subconvexity bound \begin{equation*} L(1/2,\pi\times f)\ll_{f,\epsilon} \|\mu\|^{3/2-1/30+\epsilon} \end{equation*}
Comments: 22 pages, Preliminary version. Comments welcome
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2007.05043 [math.NT] (Published 2020-07-09)
Subconvexity bound for $GL(3) \times GL(2)$ $L$-functions in $GL(2)$ spectral aspect
arXiv:2006.07819 [math.NT] (Published 2020-06-14)
Sub-convexity bound for $GL(3) \times GL(2)$ $L$-functions: $GL(3)$-spectral aspect
arXiv:1703.08863 [math.NT] (Published 2017-03-26)
Rapid computation of $L$-functions attached to Maass forms