arXiv Analytics

Sign in

arXiv:2012.12747 [math.CA]AbstractReferencesReviewsResources

On weighted Compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators

Shifeng Wang, Qingying Xue

Published 2020-12-23Version 1

Let $T$ be a bilinear Calder\'on-Zygmund singular integral operator and $T^*$ be its corresponding truncated maximal operator. For any $b\in\text{BMO}(\mathbb {R}^n)$ and $\vec{b}=(b_1,\ b_2)\in\text{BMO}(\mathbb {R}^n)\times\text {BMO}(\mathbb{R}^n)$, let $T^*_{b,j}$ (j=1,2), $T^*_{\vec{b}}\ $ be the commutators in the j-th entry and the iterated commutators of $T^*$, respectively. In this paper, for all $1<p_1,p_2<\infty$, $\frac{1}{p}=\frac{1}{p_1}+\frac{1}{p_2}$, we show that $T^*_{b,j}$ and $T^*_{\vec{b}}$ are compact operators from $L^{p_1}(w_1)\times L^{p_2}(w_2)$ to $L^p(v_{\vec{w}})$, if $b,b_1,b_2\in{\rm CMO}(\mathbb{R}^n)$ and $\vec{w}=(w_1,w_2)\in A_{\vec{p}}$, $v_{\vec{w}}=w_1^{p/p_1}w_2^{p/p_2}$. Here ${\rm CMO}(\mathbb{R}^n)$ denotes the closure of $\mathcal{C}_c^\infty(\mathbb{R}^n)$ in the ${\rm BMO}(\mathbb{R}^n)$ topology and $A_{\vec{p}}$ is the multiple weights class.

Related articles: Most relevant | Search more
arXiv:1310.5787 [math.CA] (Published 2013-10-22, updated 2013-12-13)
Compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators
arXiv:2205.01964 [math.CA] (Published 2022-05-04)
On weighted Compactness of Commutators of square function and semi-group maximal function associated to Schrodinger operator
arXiv:1804.06296 [math.CA] (Published 2018-04-17)
Commutators of bilinear bi-parameter singular integrals