arXiv Analytics

Sign in

arXiv:1310.5787 [math.CA]AbstractReferencesReviewsResources

Compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators

Yong Ding, Ting Mei, Qingying Xue

Published 2013-10-22, updated 2013-12-13Version 3

Let $T$ be a bilinear Calder\'{o}n-Zygmund singular integral operator and $T_*$ be its corresponding truncated maximal operator. The commutators in the $i$-$th$ entry and the iterated commutators of $T_*$ are defined by $$ T_{\ast,b,1}(f,g)(x)=\sup_{\delta>0}\bigg|\iint_{|x-y|+|x-z|>\delta}K(x,y,z)(b(y)-b(x))f(y)g(z)dydz\bigg|, $$ $$T_{\ast,b,2}(f,g)(x)=\sup_{\delta>0}\bigg|\iint_{|x-y|+|x-z|>\delta}K(x,y,z)(b(z)-b(x))f(y)g(z)dydz\bigg|,$$ \begin{align*} T_{\ast,(b_1,b_2)}(f,g)(x)=\sup\limits_{\delta>0}\bigg|\iint_{|x-y|+|x-z|>\delta} K(x,y,z)(b_1(y)-b_1(x))(b_2(z)-b_2(x))f(y)g(z)dydz\bigg|. \end{align*} In this paper, the compactness of the commutators $T_{\ast,b,1}$, $T_{\ast,b,2}$ and $T_{\ast,(b_1,b_2)}$ on $L^r(\mathbb{R}^n))$ is established.

Related articles: Most relevant | Search more
arXiv:2012.12747 [math.CA] (Published 2020-12-23)
On weighted Compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators
arXiv:1712.08292 [math.CA] (Published 2017-12-22)
A revisit on the compactness of commutators
arXiv:1211.0672 [math.CA] (Published 2012-11-04, updated 2014-10-07)
A characterization of compactness for singular integrals