{ "id": "1310.5787", "version": "v3", "published": "2013-10-22T03:12:51.000Z", "updated": "2013-12-13T07:08:27.000Z", "title": "Compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators", "authors": [ "Yong Ding", "Ting Mei", "Qingying Xue" ], "comment": "New version, corrected the fomer mistakes", "categories": [ "math.CA" ], "abstract": "Let $T$ be a bilinear Calder\\'{o}n-Zygmund singular integral operator and $T_*$ be its corresponding truncated maximal operator. The commutators in the $i$-$th$ entry and the iterated commutators of $T_*$ are defined by $$ T_{\\ast,b,1}(f,g)(x)=\\sup_{\\delta>0}\\bigg|\\iint_{|x-y|+|x-z|>\\delta}K(x,y,z)(b(y)-b(x))f(y)g(z)dydz\\bigg|, $$ $$T_{\\ast,b,2}(f,g)(x)=\\sup_{\\delta>0}\\bigg|\\iint_{|x-y|+|x-z|>\\delta}K(x,y,z)(b(z)-b(x))f(y)g(z)dydz\\bigg|,$$ \\begin{align*} T_{\\ast,(b_1,b_2)}(f,g)(x)=\\sup\\limits_{\\delta>0}\\bigg|\\iint_{|x-y|+|x-z|>\\delta} K(x,y,z)(b_1(y)-b_1(x))(b_2(z)-b_2(x))f(y)g(z)dydz\\bigg|. \\end{align*} In this paper, the compactness of the commutators $T_{\\ast,b,1}$, $T_{\\ast,b,2}$ and $T_{\\ast,(b_1,b_2)}$ on $L^r(\\mathbb{R}^n))$ is established.", "revisions": [ { "version": "v3", "updated": "2013-12-13T07:08:27.000Z" } ], "analyses": { "subjects": [ "42B25", "47G10" ], "keywords": [ "maximal calderón-zygmund singular integral operators", "bilinear maximal calderón-zygmund singular integral", "commutators", "compactness", "corresponding truncated maximal operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2013arXiv1310.5787D" } } }