{ "id": "2012.12747", "version": "v1", "published": "2020-12-23T15:29:28.000Z", "updated": "2020-12-23T15:29:28.000Z", "title": "On weighted Compactness of commutators of bilinear maximal Calderón-Zygmund singular integral operators", "authors": [ "Shifeng Wang", "Qingying Xue" ], "comment": "16 pages", "categories": [ "math.CA" ], "abstract": "Let $T$ be a bilinear Calder\\'on-Zygmund singular integral operator and $T^*$ be its corresponding truncated maximal operator. For any $b\\in\\text{BMO}(\\mathbb {R}^n)$ and $\\vec{b}=(b_1,\\ b_2)\\in\\text{BMO}(\\mathbb {R}^n)\\times\\text {BMO}(\\mathbb{R}^n)$, let $T^*_{b,j}$ (j=1,2), $T^*_{\\vec{b}}\\ $ be the commutators in the j-th entry and the iterated commutators of $T^*$, respectively. In this paper, for all $1