arXiv:1804.06296 [math.CA]AbstractReferencesReviewsResources
Commutators of bilinear bi-parameter singular integrals
Kangwei Li, Henri Martikainen, Emil Vuorinen
Published 2018-04-17Version 1
We study the boundedness properties of commutators formed by $b$ and $T$, where $T$ is a bilinear bi-parameter singular integral satisfying natural $T1$ type conditions and $b$ is a little BMO function. For paraproduct free bilinear bi-parameter singular integrals $T$ we prove that $[b, T]_1 \colon L^p(\mathbb{R}^{n+m}) \times L^q(\mathbb{R}^{n+m}) \to L^r(\mathbb{R}^{n+m})$ in the full range $1 < p, q \le \infty$, $1/2 < r < \infty$ satisfying $1/p+1/q = 1/r$. A special case is when $T$ is a bilinear bi-parameter multiplier. We also prove the corresponding Banach range result for all singular integrals satisfying the $T1$ type conditions. In doing so we simplify the corresponding linear proof. Lastly, we prove analogous results for iterated commutators.