arXiv Analytics

Sign in

arXiv:1804.06296 [math.CA]AbstractReferencesReviewsResources

Commutators of bilinear bi-parameter singular integrals

Kangwei Li, Henri Martikainen, Emil Vuorinen

Published 2018-04-17Version 1

We study the boundedness properties of commutators formed by $b$ and $T$, where $T$ is a bilinear bi-parameter singular integral satisfying natural $T1$ type conditions and $b$ is a little BMO function. For paraproduct free bilinear bi-parameter singular integrals $T$ we prove that $[b, T]_1 \colon L^p(\mathbb{R}^{n+m}) \times L^q(\mathbb{R}^{n+m}) \to L^r(\mathbb{R}^{n+m})$ in the full range $1 < p, q \le \infty$, $1/2 < r < \infty$ satisfying $1/p+1/q = 1/r$. A special case is when $T$ is a bilinear bi-parameter multiplier. We also prove the corresponding Banach range result for all singular integrals satisfying the $T1$ type conditions. In doing so we simplify the corresponding linear proof. Lastly, we prove analogous results for iterated commutators.

Related articles: Most relevant | Search more
arXiv:2001.11182 [math.CA] (Published 2020-01-30)
Commutators in the two scalar and matrix weighted setting
arXiv:1607.06432 [math.CA] (Published 2016-07-21)
$A_1$ theory of weights for rough homogeneous singular integrals and commutators
arXiv:2402.04993 [math.CA] (Published 2024-02-07)
Off-diagonal compactness extrapolation principles for commutators