{ "id": "1804.06296", "version": "v1", "published": "2018-04-17T14:47:34.000Z", "updated": "2018-04-17T14:47:34.000Z", "title": "Commutators of bilinear bi-parameter singular integrals", "authors": [ "Kangwei Li", "Henri Martikainen", "Emil Vuorinen" ], "comment": "37 pages", "categories": [ "math.CA" ], "abstract": "We study the boundedness properties of commutators formed by $b$ and $T$, where $T$ is a bilinear bi-parameter singular integral satisfying natural $T1$ type conditions and $b$ is a little BMO function. For paraproduct free bilinear bi-parameter singular integrals $T$ we prove that $[b, T]_1 \\colon L^p(\\mathbb{R}^{n+m}) \\times L^q(\\mathbb{R}^{n+m}) \\to L^r(\\mathbb{R}^{n+m})$ in the full range $1 < p, q \\le \\infty$, $1/2 < r < \\infty$ satisfying $1/p+1/q = 1/r$. A special case is when $T$ is a bilinear bi-parameter multiplier. We also prove the corresponding Banach range result for all singular integrals satisfying the $T1$ type conditions. In doing so we simplify the corresponding linear proof. Lastly, we prove analogous results for iterated commutators.", "revisions": [ { "version": "v1", "updated": "2018-04-17T14:47:34.000Z" } ], "analyses": { "subjects": [ "42B20" ], "keywords": [ "commutators", "free bilinear bi-parameter singular integrals", "paraproduct free bilinear bi-parameter singular", "type conditions", "bi-parameter singular integral satisfying natural" ], "note": { "typesetting": "TeX", "pages": 37, "language": "en", "license": "arXiv", "status": "editable" } } }