arXiv Analytics

Sign in

arXiv:2003.12749 [math.NT]AbstractReferencesReviewsResources

On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$

Hairong Bai, Elif Kızıldere, Gökhan Soydan, Pingzhi Yuan

Published 2020-03-28Version 1

Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z},\ n\geq 2,\ xyz\neq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the proofs are Baker's theory and Bilu-Hanrot-Voutier's result on primitive divisors of Lucas numbers.

Comments: 12 pages, to appear, Colloquium Mathematicum (2020)
Categories: math.NT
Subjects: 11D61, 11D41
Related articles: Most relevant | Search more
arXiv:2104.12680 [math.NT] (Published 2021-04-26)
On the exponential Diophantine equation $x^2+5^a13^b17^c=2^m y^n$
arXiv:2405.09252 [math.NT] (Published 2024-05-15)
An Exponential Diophantine equation $x^2+3^α 113^β=y^{\mathfrak{n}}$
arXiv:1611.07713 [math.NT] (Published 2016-11-23)
An Exponential Diophantine Equation - One Order Higher than Fermat's Equation