arXiv Analytics

Sign in

arXiv:2104.12680 [math.NT]AbstractReferencesReviewsResources

On the exponential Diophantine equation $x^2+5^a13^b17^c=2^m y^n$

Azizul Hoque

Published 2021-04-26Version 1

We find all the positive integer solutions $(x,y,a,b,c,m,n)$ of the Diophantine equation in the title for $a,b,c, m\geq 0$ and $n \geq 3$ with $\gcd(x,y)=1$.

Comments: Diophantine equation, Lehmer number, Elliptic curve, Quartic curve, S-Integral Points
Categories: math.NT
Subjects: 11D61, 11D41, 11Y50
Related articles: Most relevant | Search more
arXiv:2003.12749 [math.NT] (Published 2020-03-28)
On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$
arXiv:2405.09252 [math.NT] (Published 2024-05-15)
An Exponential Diophantine equation $x^2+3^α 113^β=y^{\mathfrak{n}}$
arXiv:1611.07713 [math.NT] (Published 2016-11-23)
An Exponential Diophantine Equation - One Order Higher than Fermat's Equation