arXiv:2405.09252 [math.NT]AbstractReferencesReviewsResources
An Exponential Diophantine equation $x^2+3^α 113^β=y^{\mathfrak{n}}$
Published 2024-05-15Version 1
The objective of the paper is to determine the complete solutions for the Diophantine equation $x^2 + 3^{\alpha}113^{\beta} = y^{\mathfrak{n}}$ in positive integers $x$ and $y$ (where $x, y \geq 1$), non-negative exponents $\alpha$ and $\beta$, and an integer $\mathfrak{n}\geq 3$, subject to the condition $\text{gcd}(x, y) = 1$.
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2104.12680 [math.NT] (Published 2021-04-26)
On the exponential Diophantine equation $x^2+5^a13^b17^c=2^m y^n$
arXiv:2003.12749 [math.NT] (Published 2020-03-28)
On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$
arXiv:1611.07713 [math.NT] (Published 2016-11-23)
An Exponential Diophantine Equation - One Order Higher than Fermat's Equation