{ "id": "2003.12749", "version": "v1", "published": "2020-03-28T09:13:53.000Z", "updated": "2020-03-28T09:13:53.000Z", "title": "On the exponential Diophantine equation $(n-1)^{x}+(n+2)^{y}=n^{z}$", "authors": [ "Hairong Bai", "Elif Kızıldere", "Gökhan Soydan", "Pingzhi Yuan" ], "comment": "12 pages, to appear, Colloquium Mathematicum (2020)", "doi": "10.4064/cm7668-6-2019", "categories": [ "math.NT" ], "abstract": "Suppose that $n$ is a positive integer. In this paper, we show that the exponential Diophantine equation $$(n-1)^{x}+(n+2)^{y}=n^{z},\\ n\\geq 2,\\ xyz\\neq 0$$ has only the positive integer solutions $(n,x,y,z)=(3,2,1,2), (3,1,2,3)$. The main tools on the proofs are Baker's theory and Bilu-Hanrot-Voutier's result on primitive divisors of Lucas numbers.", "revisions": [ { "version": "v1", "updated": "2020-03-28T09:13:53.000Z" } ], "analyses": { "subjects": [ "11D61", "11D41" ], "keywords": [ "exponential diophantine equation", "main tools", "bilu-hanrot-voutiers result", "positive integer solutions", "bakers theory" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }