arXiv Analytics

Sign in

arXiv:1911.01790 [math.NT]AbstractReferencesReviewsResources

Proof of two supercongruences by the Wilf-Zeilberger method

Guo-Shuai Mao

Published 2019-11-01Version 1

In this paper, we prove two supercongruences by the Wilf-Zeilberger method. One of them is, for any prime $p>3$, \begin{align*} \sum_{n=0}^{(p-1)/2}\frac{3n+1}{(-8)^n}\binom{2n}n^3\equiv p\left(\frac{-1}p\right)+\frac{p^3}4\left(\frac2p\right)E_{p-3}\left(\frac14\right)\pmod{p^4}, \end{align*} where $\left(\frac{\cdot}p\right)$ stands for the Legendre symbol, and $E_{n}(x)$ are the Euler polynomials. This congruence confirms a conjecture of Sun \cite[(2.18)]{sun-numb-2019} with $n=1$.

Comments: 13 pages. arXiv admin note: substantial text overlap with arXiv:1910.09983
Categories: math.NT, math.CO
Related articles: Most relevant | Search more
arXiv:1909.13173 [math.NT] (Published 2019-09-29)
Proof of some supercongruences via the Wilf-Zeilberger method
arXiv:1910.09983 [math.NT] (Published 2019-10-20)
Proof of two supercongruences conjectured by Z.-W. Sun via the Wilf-Zeilberger method
arXiv:1605.09179 [math.NT] (Published 2016-05-30)
New super congruences involving Bernoulli and Euler polynomials