arXiv:1909.13173 [math.NT]AbstractReferencesReviewsResources
Proof of some supercongruences via the Wilf-Zeilberger method
Published 2019-09-29Version 1
In this paper, we prove some supercongruences via the Wilf-Zeilberger method. For instance, for any odd prime $p$ and positive integer $r$ and $\delta\in\{1,2\}$, we have \begin{align*} \sum_{n=0}^{(p^r-1)/\delta} \frac{\left(\frac12\right)^5_n}{n!^5}(10n^2+6n+1)(-4)^n &\equiv\begin{cases}p^{2r}\ \pmod{p^{r+4}} &\tt{if}\ r\leq4, \\0\ \pmod{p^{r+4}} &\tt{if}\ r \geq5. \end{cases} \end{align*}
Comments: 20 pages. This is a preliminary manuscript. Any comments are welcome
Related articles: Most relevant | Search more
arXiv:1012.3919 [math.NT] (Published 2010-12-17)
Constructing $x^2$ for primes $p=ax^2+by^2$
arXiv:1307.1840 [math.NT] (Published 2013-07-07)
Primality test for numbers of the form $(2p)^{2^n}+1$
arXiv:1405.7294 [math.NT] (Published 2014-05-28)
A converse to a theorem of Gross, Zagier, and Kolyvagin