{ "id": "1909.13173", "version": "v1", "published": "2019-09-29T00:19:08.000Z", "updated": "2019-09-29T00:19:08.000Z", "title": "Proof of some supercongruences via the Wilf-Zeilberger method", "authors": [ "Guo-Shuai Mao" ], "comment": "20 pages. This is a preliminary manuscript. Any comments are welcome", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, we prove some supercongruences via the Wilf-Zeilberger method. For instance, for any odd prime $p$ and positive integer $r$ and $\\delta\\in\\{1,2\\}$, we have \\begin{align*} \\sum_{n=0}^{(p^r-1)/\\delta} \\frac{\\left(\\frac12\\right)^5_n}{n!^5}(10n^2+6n+1)(-4)^n &\\equiv\\begin{cases}p^{2r}\\ \\pmod{p^{r+4}} &\\tt{if}\\ r\\leq4, \\\\0\\ \\pmod{p^{r+4}} &\\tt{if}\\ r \\geq5. \\end{cases} \\end{align*}", "revisions": [ { "version": "v1", "updated": "2019-09-29T00:19:08.000Z" } ], "analyses": { "keywords": [ "wilf-zeilberger method", "supercongruences", "odd prime" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }