{ "id": "1911.01790", "version": "v1", "published": "2019-11-01T09:37:04.000Z", "updated": "2019-11-01T09:37:04.000Z", "title": "Proof of two supercongruences by the Wilf-Zeilberger method", "authors": [ "Guo-Shuai Mao" ], "comment": "13 pages. arXiv admin note: substantial text overlap with arXiv:1910.09983", "categories": [ "math.NT", "math.CO" ], "abstract": "In this paper, we prove two supercongruences by the Wilf-Zeilberger method. One of them is, for any prime $p>3$, \\begin{align*} \\sum_{n=0}^{(p-1)/2}\\frac{3n+1}{(-8)^n}\\binom{2n}n^3\\equiv p\\left(\\frac{-1}p\\right)+\\frac{p^3}4\\left(\\frac2p\\right)E_{p-3}\\left(\\frac14\\right)\\pmod{p^4}, \\end{align*} where $\\left(\\frac{\\cdot}p\\right)$ stands for the Legendre symbol, and $E_{n}(x)$ are the Euler polynomials. This congruence confirms a conjecture of Sun \\cite[(2.18)]{sun-numb-2019} with $n=1$.", "revisions": [ { "version": "v1", "updated": "2019-11-01T09:37:04.000Z" } ], "analyses": { "keywords": [ "wilf-zeilberger method", "supercongruences", "congruence confirms", "euler polynomials" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }