arXiv Analytics

Sign in

arXiv:1605.09179 [math.NT]AbstractReferencesReviewsResources

New super congruences involving Bernoulli and Euler polynomials

Zhi-Hong Sun

Published 2016-05-30Version 1

Let $p>3$ be a prime, and let $a$ be a rational p-adic integer with $a\not\equiv 0\pmod p$. In this paper we establish congruences for $$\sum_{k=1}^{(p-1)/2}\frac{\binom ak\binom{-1-a}k}k, \quad\sum_{k=0}^{(p-1)/2}k\binom ak\binom{-1-a}k \quad\text{and}\quad\sum_{k=0}^{(p-1)/2}\frac{\binom ak\binom{-1-a}k}{2k-1}\pmod {p^2}$$ in terms of Bernoulli and Euler polynomials. We also give some transformation formulas for congruences modulo $p^2$.

Related articles: Most relevant | Search more
arXiv:1407.0636 [math.NT] (Published 2014-07-02, updated 2014-07-28)
Super congruences involving Bernoulli and Euler polynomials
arXiv:math/0408223 [math.NT] (Published 2004-08-17, updated 2004-08-20)
New identities involving Bernoulli and Euler polynomials. II
arXiv:math/0407363 [math.NT] (Published 2004-07-21, updated 2004-08-05)
New identities involving Bernoulli and Euler polynomials