arXiv Analytics

Sign in

arXiv:math/9907029 [math.CO]AbstractReferencesReviewsResources

A q-analogue of a formula of Hernandez obtained by inverting a result of Dilcher

Helmut Prodinger

Published 1999-07-06Version 1

We prove a q-analogue of the formula $ \sum_{1\le k\le n} \binom nk(-1)^{k-1}\sum_{1\le i_1\le i_2\le... \le i_m=k}\frac1{i_1i_2... i_m} = \sum_{1\le k\le n}\frac{1}{k^m} $ by inverting a formula due to Dilcher.

Categories: math.CO
Subjects: 05A10
Keywords: q-analogue
Related articles: Most relevant | Search more
arXiv:2402.11979 [math.CO] (Published 2024-02-19, updated 2025-01-29)
On a q-analogue of the Zeta polynomial of posets
arXiv:1610.09250 [math.CO] (Published 2016-10-28)
Defining the q-analogue of a matroid
arXiv:1008.1469 [math.CO] (Published 2010-08-09, updated 2011-04-05)
A q-analogue of some binomial coefficient identities of Y. Sun