{ "id": "math/9907029", "version": "v1", "published": "1999-07-06T12:06:30.000Z", "updated": "1999-07-06T12:06:30.000Z", "title": "A q-analogue of a formula of Hernandez obtained by inverting a result of Dilcher", "authors": [ "Helmut Prodinger" ], "categories": [ "math.CO" ], "abstract": "We prove a q-analogue of the formula $ \\sum_{1\\le k\\le n} \\binom nk(-1)^{k-1}\\sum_{1\\le i_1\\le i_2\\le... \\le i_m=k}\\frac1{i_1i_2... i_m} = \\sum_{1\\le k\\le n}\\frac{1}{k^m} $ by inverting a formula due to Dilcher.", "revisions": [ { "version": "v1", "updated": "1999-07-06T12:06:30.000Z" } ], "analyses": { "subjects": [ "05A10" ], "keywords": [ "q-analogue" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1999math......7029P" } } }