arXiv:1008.1469 [math.CO]AbstractReferencesReviewsResources
A q-analogue of some binomial coefficient identities of Y. Sun
Victor J. W. Guo, Dan-Mei Yang
Published 2010-08-09, updated 2011-04-05Version 2
We give a $q$-analogue of some binomial coefficient identities of Y. Sun [Electron. J. Combin. 17 (2010), #N20] as follows: {align*} \sum_{k=0}^{\lfloor n/2\rfloor}{m+k\brack k}_{q^2}{m+1\brack n-2k}_{q} q^{n-2k\choose 2} &={m+n\brack n}_{q}, \sum_{k=0}^{\lfloor n/4\rfloor}{m+k\brack k}_{q^4}{m+1\brack n-4k}_{q} q^{n-4k\choose 2} &=\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k{m+k\brack k}_{q^2}{m+n-2k\brack n-2k}_{q}, {align*} where ${n\brack k}_q$ stands for the $q$-binomial coefficient. We provide two proofs, one of which is combinatorial via partitions.
Comments: 6 pages, final version
Journal: Electron. J. Combin. 18 (1) (2011), #P78
Categories: math.CO
Tags: journal article
Related articles: Most relevant | Search more
arXiv:2301.09587 [math.CO] (Published 2023-01-23)
On some Binomial Coefficient Identities with Applications
arXiv:math/9907029 [math.CO] (Published 1999-07-06)
A q-analogue of a formula of Hernandez obtained by inverting a result of Dilcher
arXiv:1610.09250 [math.CO] (Published 2016-10-28)
Defining the q-analogue of a matroid