{ "id": "1008.1469", "version": "v2", "published": "2010-08-09T09:01:45.000Z", "updated": "2011-04-05T12:50:35.000Z", "title": "A q-analogue of some binomial coefficient identities of Y. Sun", "authors": [ "Victor J. W. Guo", "Dan-Mei Yang" ], "comment": "6 pages, final version", "journal": "Electron. J. Combin. 18 (1) (2011), #P78", "categories": [ "math.CO" ], "abstract": "We give a $q$-analogue of some binomial coefficient identities of Y. Sun [Electron. J. Combin. 17 (2010), #N20] as follows: {align*} \\sum_{k=0}^{\\lfloor n/2\\rfloor}{m+k\\brack k}_{q^2}{m+1\\brack n-2k}_{q} q^{n-2k\\choose 2} &={m+n\\brack n}_{q}, \\sum_{k=0}^{\\lfloor n/4\\rfloor}{m+k\\brack k}_{q^4}{m+1\\brack n-4k}_{q} q^{n-4k\\choose 2} &=\\sum_{k=0}^{\\lfloor n/2\\rfloor}(-1)^k{m+k\\brack k}_{q^2}{m+n-2k\\brack n-2k}_{q}, {align*} where ${n\\brack k}_q$ stands for the $q$-binomial coefficient. We provide two proofs, one of which is combinatorial via partitions.", "revisions": [ { "version": "v2", "updated": "2011-04-05T12:50:35.000Z" } ], "analyses": { "subjects": [ "05A10", "05A17" ], "keywords": [ "binomial coefficient identities", "q-analogue", "combinatorial" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.1469G" } } }