arXiv Analytics

Sign in

arXiv:math/9810052 [math.AG]AbstractReferencesReviewsResources

Density of rational points on Enriques surfaces

F. Bogomolov, Yu. Tschinkel

Published 1998-10-08Version 1

Let $X$ be an Enriques surface defined over a number field $K$. Then there exists a finite extension $K'/K$ such that the set of $K'$-rational points of $X$ is Zariski dense.

Comments: 8 pages, LaTeX
Categories: math.AG, math.NT
Related articles: Most relevant | Search more
arXiv:math/9809015 [math.AG] (Published 1998-09-03)
Rational Points on Quartics
arXiv:math/9811043 [math.AG] (Published 1998-11-07)
On the density of rational points on elliptic fibrations
arXiv:1107.1634 [math.AG] (Published 2011-07-08, updated 2011-12-06)
Arithmetic of 0-cycles on varieties defined over number fields