{ "id": "math/9810052", "version": "v1", "published": "1998-10-08T16:32:31.000Z", "updated": "1998-10-08T16:32:31.000Z", "title": "Density of rational points on Enriques surfaces", "authors": [ "F. Bogomolov", "Yu. Tschinkel" ], "comment": "8 pages, LaTeX", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $X$ be an Enriques surface defined over a number field $K$. Then there exists a finite extension $K'/K$ such that the set of $K'$-rational points of $X$ is Zariski dense.", "revisions": [ { "version": "v1", "updated": "1998-10-08T16:32:31.000Z" } ], "analyses": { "keywords": [ "rational points", "number field", "finite extension", "zariski dense" ], "note": { "typesetting": "LaTeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math.....10052B" } } }