arXiv Analytics

Sign in

arXiv:math/9809015 [math.AG]AbstractReferencesReviewsResources

Rational Points on Quartics

Joe Harris, Yuri Tschinkel

Published 1998-09-03Version 1

Let $S \subset \P^n$ be a smooth quartic hypersurface defined over a number field $K$. If $n \ge 4$, then for some finite extension $K'$ of $K$ the set $S(K')$ of $K'$-rational points of $S$ is Zariski dense.

Comments: 32 pages; LaTeX
Categories: math.AG, math.NT
Subjects: 14G05, 11D25
Related articles: Most relevant | Search more
arXiv:math/9810052 [math.AG] (Published 1998-10-08)
Density of rational points on Enriques surfaces
arXiv:1001.1150 [math.AG] (Published 2010-01-07, updated 2010-04-01)
Remarks on endomorphisms and rational points
arXiv:0707.3948 [math.AG] (Published 2007-07-26)
Potential density of rational points on the variety of lines of a cubic fourfold