{ "id": "math/9809015", "version": "v1", "published": "1998-09-03T20:46:11.000Z", "updated": "1998-09-03T20:46:11.000Z", "title": "Rational Points on Quartics", "authors": [ "Joe Harris", "Yuri Tschinkel" ], "comment": "32 pages; LaTeX", "categories": [ "math.AG", "math.NT" ], "abstract": "Let $S \\subset \\P^n$ be a smooth quartic hypersurface defined over a number field $K$. If $n \\ge 4$, then for some finite extension $K'$ of $K$ the set $S(K')$ of $K'$-rational points of $S$ is Zariski dense.", "revisions": [ { "version": "v1", "updated": "1998-09-03T20:46:11.000Z" } ], "analyses": { "subjects": [ "14G05", "11D25" ], "keywords": [ "rational points", "smooth quartic hypersurface", "number field", "finite extension", "zariski dense" ], "note": { "typesetting": "LaTeX", "pages": 32, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......9015H" } } }