arXiv Analytics

Sign in

arXiv:math/9308212 [math.LO]AbstractReferencesReviewsResources

On CH + 2^{aleph_1}-> (alpha)^2_2 for alpha < omega_2

Saharon Shelah

Published 1993-08-15Version 1

We prove the consistency of ``CH + 2^{aleph_1} is arbitrarily large + 2^{aleph_1} not-> (omega_1 x omega)^2_2''. If fact, we can get 2^{aleph_1} not-> [omega_1 x omega]^2_{aleph_0}. In addition to this theorem, we give generalizations to other cardinals.

Journal: Lecture Notes Logic 2 (1993), 281--289
Categories: math.LO
Related articles: Most relevant | Search more
arXiv:math/9603219 [math.LO] (Published 1996-03-15)
The consistency of 2^{aleph_{0}}> aleph_{omega} + I(aleph_{2})=I(aleph_{omega})
arXiv:math/9304203 [math.LO] (Published 1993-04-15)
The Consistency of $ZFC+CIFS$
arXiv:2007.10167 [math.LO] (Published 2020-07-20)
On consistency and existence in mathematics