{ "id": "math/9308212", "version": "v1", "published": "1993-08-15T00:00:00.000Z", "updated": "1993-08-15T00:00:00.000Z", "title": "On CH + 2^{aleph_1}-> (alpha)^2_2 for alpha < omega_2", "authors": [ "Saharon Shelah" ], "journal": "Lecture Notes Logic 2 (1993), 281--289", "categories": [ "math.LO" ], "abstract": "We prove the consistency of ``CH + 2^{aleph_1} is arbitrarily large + 2^{aleph_1} not-> (omega_1 x omega)^2_2''. If fact, we can get 2^{aleph_1} not-> [omega_1 x omega]^2_{aleph_0}. In addition to this theorem, we give generalizations to other cardinals.", "revisions": [ { "version": "v1", "updated": "1993-08-15T00:00:00.000Z" } ], "analyses": { "keywords": [ "consistency", "arbitrarily large" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1993math......8212S" } } }