arXiv Analytics

Sign in

arXiv:math/9202203 [math.FA]AbstractReferencesReviewsResources

Lower estimates of random unconditional constants of Walsh-Paley martingales with values in banach spaces

Stefan Geiss

Published 1992-02-28Version 1

For a Banach space X we define RUMD_n(X) to be the infimum of all c>0 such that (AVE_{\epsilon_k =\pm 1} || \sum_1^n epsilon_k (M_k - M_{k-1} )||_{L_2^X}^2 )^{1/2} <= c || M_n ||_{L_2^X} holds for all Walsh-Paley martingales {M_k}_0^n subset L_2^X with M_0 =0. We relate the asymptotic behaviour of the sequence {RUMD(X)}_{n=1}^{infinity} to geometrical properties of the Banach space X such as K-convexity and superreflexivity.

Related articles: Most relevant | Search more
arXiv:1901.04382 [math.FA] (Published 2019-01-14)
On the Asymptotic Behaviour of some Positive Semigroups
arXiv:0807.2981 [math.FA] (Published 2008-07-18)
The Littlewood--Paley--Rubio de Francia property of a Banach space for the case of equal intervals
arXiv:math/0206112 [math.FA] (Published 2002-06-11)
On factorization of operators between Banach spaces