{ "id": "math/9202203", "version": "v1", "published": "1992-02-28T15:51:29.000Z", "updated": "1992-02-28T15:51:29.000Z", "title": "Lower estimates of random unconditional constants of Walsh-Paley martingales with values in banach spaces", "authors": [ "Stefan Geiss" ], "categories": [ "math.FA" ], "abstract": "For a Banach space X we define RUMD_n(X) to be the infimum of all c>0 such that (AVE_{\\epsilon_k =\\pm 1} || \\sum_1^n epsilon_k (M_k - M_{k-1} )||_{L_2^X}^2 )^{1/2} <= c || M_n ||_{L_2^X} holds for all Walsh-Paley martingales {M_k}_0^n subset L_2^X with M_0 =0. We relate the asymptotic behaviour of the sequence {RUMD(X)}_{n=1}^{infinity} to geometrical properties of the Banach space X such as K-convexity and superreflexivity.", "revisions": [ { "version": "v1", "updated": "1992-02-28T15:51:29.000Z" } ], "analyses": { "keywords": [ "banach space", "random unconditional constants", "walsh-paley martingales", "lower estimates", "asymptotic behaviour" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1992math......2203G" } } }